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Abstract. In this paper we present a method for intrinsic modeling of
nonlinear filtering problems without a-priori knowledge using empirical
information geometry and empirical differential geometry. We show that
the inferred model is noise resilient and invariant under different ran-
dom observations and instrumental modalities. In addition, we show that
it can be extended efficiently to newly acquired measurements. Based
on this model, we present a Bayesian framework for nonlinear filter-
ing, which enables to optimally process real signals without predefined
statistical models. An application to biomedical imaging, in which the
acquisition instruments are based on photon counters, is demonstrated;
we propose to incorporate the temporal information, which is commonly
ignored in existing methods, for image enhancement.

Keywords: Intrinsic model, differential geometry, information geome-
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1 Introduction

Nonlinear filtering problems are usually formulated in the state-space, which nat-
urally introduces an underlying process on a manifold. The state-space formalism
includes two models: a (possibly nonlinear) dynamical model which consists of a
stochastic differential equation describing the evolution of the underlying process
(state) with time, and the (nonlinear) measurement model that relates the noisy
observations to the underlying process. The prior knowledge of the two models
is essential in estimation problems. Specifically, it is required in Bayesian algo-
rithms, e.g. the Kalman Filter and its extensions [3] as well as contemporary
sequential Monte Carlo algorithms [2,6]. Unfortunately, these models might be
unknown and difficult to reveal in real applications.

In this paper, our main goal is to provide viable models to such nonlinear
signal processing problems. We present a method to construct intrinsic models,
which are invariant to the measurement modality and noise. In addition, the ob-
tained models can be extended to new measurements in a sequential manner. We
adopt ideas from information geometry, which provides a convenient framework
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to combine geometric and statistical analysis, and obtain a representation of em-
pirical distributions of signals. However, unlike traditional information geometry,
we infer the underlying model of distributions from measurements instead of us-
ing known models. The intrinsic model is obtained through eigenvectors of an
appropriate Laplace operator [4,5]. The role of the Laplace operator is to quantify
the connections between the measurements and to integrate all the information.
Specifically, its eigenvectors provide an embedding (or a parametrization) of the
measurements, which is viewed as a representation of the underlying process
on the parametric manifold. Based on the inferred intrinsic models, we present
a nonparametric Bayesian framework for tracking and estimation. This frame-
work enables to optimally process real signals without statistical descriptions
nor predefined models.

We believe that such a nonparametric Bayesian framework may be useful for
biological imaging. An imaging process usually consists of the emission of radi-
ation or light on an object or a specimen of interest for a certain time interval.
The corresponding output signal of the acquisition sensors (e.g., photon coun-
ters) is a time series of the instantaneous amount of radiation at the sensors that
travelled through the object of interest over the duration of the imaging process.
Since such an imaging process is known to be very noisy, common practice is to
compute the mean value of the time series at each sensor in order to suppress
the (zero-mean) additive noise. In addition, in order to obtain better suppres-
sion, the duration, and hence, the amount of radiation, is extended as much as
possible. In case the sensors are positioned in a 2-d grid array, the means of
the outputs of the sensors yield a 2-d image, in which each pixel corresponds
to a sensor. Unfortunately, the object may move or vibrate (or even change due
to exposure to radiation) during the acquisition process, and each sensor might
capture descriptions of different parts of the object. Thus, computing the mean
of each time series should include a proper alignment according to the move-
ment of the object. We propose to exploit the temporal information (which is
usually discarded during simple averaging) and to use the presented nonpara-
metric Bayesian framework to empirically reveal and track the movement of the
object. Tracking the movement enables to align the time series across the sen-
sors, and hence, to obtain better noise suppression. This may provide a better
image quality and may help to reduce the exposure time to radiation. In this
paper we demonstrate this approach on a simple simulated imaging model.

2 Problem Formulation

Let θt be a d-dimensional underlying process in time index t. The dynamics
of the process are described by normalized stochastic differential equations as
follows1

dθit � ai�θt�dt� dwi
t, i � 1, . . . , d, (1)

1 xi denotes the i-th coordinate of a vector x.
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where ai are unknown drift functions and �wi
t are independent white noises. We

note that the underlying process is equivalent to the system state in the classical
terminology.

Let zt denote an n-dimensional measurement process in time t, given by

zt � g�yt,vt�, (2)

where g is an unknown (possibly nonlinear) measurement function, yt is a
“clean” measurement obtained in noiseless conditions, and vt is a corrupting
n-dimensional measurement noise. We assume that yt is drawn from a proba-
bility density function (pdf) f�y; θ�, thereby the statistics of the measurement
process at time t are time-varying and depend on the underlying process θ at
time t. In addition, vt is drawn from an unknown stationary pdf q�v� and is
independent of yt.

The state θt constitutes a parametric manifold that is transformed into the
observable manifold of measurements. Our goal in this work is to recover θt and
its dynamics based on a sequence of measurements �zt�.

3 Local Probability Models

The time-varying pdf of the measured process zt is a function of θt, and hence,
consists of important information. Unfortunately, the pdfs are unknown and
we can only use the empirical distributions. Let ht be an m-bins histogram of
the measurements in a short window centered at time t, whose j-th element is
approximated by

hjt �
�

z�Hj

p�z; θ�dz, (3)

where p�z; θ� denotes the pdf of the measured process zt and Hj is the j-th bin.

Lemma 1. The pdf p�z; θ� of the measured process zt is given by a linear trans-
formation of the pdf f�y; θ� of the clean measurement component yt.

The proof is straightforward. By relying on the independence of yt and vt, the
pdf of the measured process is given by

p�z; θ� �
�

g�y,v��z

f�y; θ�q�v�dydv. (4)

Combining (3) and Lemma 1, we get the following result.

Corollary 1. The empirical distribution ht is given by a linear transformation
of the pdf of the clean measurement component yt.

In other words, any measurement noise is expressed as a linear transformation in
the histograms domain. We view the histograms as features of the measurements.
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From (1) and by using Itô lemma, it was shown in [8] that the �j, k�-th element
of the m�m covariance matrix Ct of ht is given by

Cjk
t � Cov�hjt , hkt � �

d�
i�1

�hj
�θi

�hk
�θi �

d�
i�1

Jji
t J

ki
t , j, k � 1, . . . ,m, (5)

where Jt is the m�d Jacobian matrix of ht. In matrix form, (5) can be rewritten
as Ct � JtJ

T
t , which yields that the covariance matrix Ct is a semi-definite

positive matrix of rank d.
We use the histograms and their corresponding covariance matrices to describe

the local statistical model Zt for each measurement, which is assumed to be a
Gaussian centered at ht with Ct covariance, i.e., N �ht,Ct�. In practice, the
empirical covariance matrices are computed in short time windows around each
histogram ht. We note that these local models serve as an intermediate step in
inferring the intrinsic model of the problem.

4 Intrinsic Modeling

Let ��zs�Ns�1 be a sequence of N reference measurements. For this sequence we
estimate the local densities and their covariance matrices as well as the local
Gaussian models �Zs�. This enables us to define a non symmetric kernel A
between any measurement zt and the N reference measurements as

Ats � Pr�zt	zt 
 Zs� � �2π�m�2	Cs	�1�2 exp

�
�1

2
�ht � hs�TC�1

s �ht � hs�
�
.

(6)
Consider the kernel Wr � ATA of the reference measurements. It was shown
in [7] that up to a normalization its �s, s��-th element is the following affinity
measure between �zs and �zs� given by

W ss�

r � exp
��d2��z,�zs��� , (7)

and
d2��zs,�zs�� � �hs � hs��T �Cs �Cs���1 �hs � hs�� (8)

is the Mahalanobis distance. Since the Mahalanobis distance is invariant under
linear transformations, by Corollary 1 it is invariant to any measurement noise.
By assuming hs � h�θs� is a bi-Lipschitz smooth function of the underlying
process θs and by using local linearization of the function, i.e., hs � JT

s θs �
εs, it was shown by Singer and Coifman in [8] that the Mahalanobis distance
approximates the Euclidean distance between the corresponding samples of the
underlying process to a second order, i.e.,

�θs � θs��2 � d2��zs,�zs�� �O��hs � hs��4�. (9)

This result implies that the Mahalanobis distance is invariant to the measure-
ment modality.



Empirical Intrinsic Geometry 445

Consider now the “dual” kernel W � AAT . It can be shown that its �t, t��-th
element consists of an affinity measure which is equal to the probability that any
two measurements are associated with the same local probability model [9], i.e.,

W tt� � Pr�zt 
 Zs, zt� 
 Zs	zt, zt��. (10)

By [7,8], W converges to a diffusion operator when we have sufficient amount of
measurements and the local models are defined in infinitesimal neighborhoods.
Such an operator reveals the low-dimensional underlying manifold, for which
the eigenvectors give an approximate parametrization. Thus, we compute the
eigenvalues �λi� and eigenvectors �ψi� of W. In the case of a flat manifold,
we assume that the leading d eigenvectors recover d proxies for the underlying
process up to a monotonic scaling [7]. We define a d-dimensional representation
by

Ψ �zt� �
�
ψt
1, ψ

t
2, . . . , ψ

t
d

	
, (11)

for each measurement at time t. Then, the embedding (11) is seen as the obtained
modeling of the measurements revealing the corresponding underlying process.

The aforementioned construction of the embedding is especially suitable for
sequential extension [9] consisting of two stages: a training stage in which a
sequence of training measurements is assumed to be available in advance, and a
test stage in which new incoming measurements are sequentially processed.

In the training stage, reference measurements are processed to form a learned
model. The feature vectors (histograms) and the corresponding local covari-
ance matrices are computed. The kernel Wr is directly computed and its eigen-
decomposition is calculated. The eigenvectors of the kernel form a learned model
for the training set.

In the test stage, as new incoming measurements become available, we con-
struct A according (6), and then, compute the extended representation by ex-
ploiting the relationship between the kernels Wr and W, given by the singular
value decomposition of A as

ψi �
1

λi

Aϕi, (12)

where ϕj are the eigenvectors of Wr. It is worthwhile noting that the extension
does not involve an eigen-decomposition but rather relies on the an algebraic
relationship. Thus, the processing of new measurements involves low computa-
tional complexity [9].

Relationship to Information Geometry. In classical information geometry [1],
the parameters of the distribution of the measurements confine the data to an
underlying manifold. The distribution is usually required in an analytic form
and the Kullback Liebler (KL) divergence is used as a comparison metric. In
this paper, we present a data-driven approach to recover the manifold without
a priori knowledge. Instead, we propose to rely on empirical distributions and
use the Mahalanobis distance as a metric between distributions to obtain their
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intrinsic parameterization. The Mahalanobis distance has a tight relationship
to the KL divergence and uses a local Gaussian distribution assumption. We
emphasize that the local Gaussian assumption is merely an intermediate step in
obtaining the intrinsic global parameterization. For more details see [11].

5 Bayesian Tracking

In this section we incorporate the dynamics of time series, which was ne-
glected thus far in the intrinsic model computation. We present a nonparametric
Bayesian framework [10] that enables to filter real signals without predefined
statistical models. For simplicity of notation, we neglect the possible scaling be-
tween the intrinsic representation in (11) and the true underlying state space,
although in practice, proper alignment or scaling is often required.

We use (11) to locally approximate the likelihood function as the following
normal distribution

Pr�zt	θt�� exp


��Ψ�zt� � θt�T C�1

θ,t �Ψ �zt� � θt�
�
, (13)

where θt is assumed to be the true underlying sample and Cθ,t is the local
covariance (now in the state-space) near θt.

We proceed by incorporating the empirical dynamics of past observations as
a prior. Let Nt�1 be a set of time indices of samples in a ξ � 0 neighborhood of
θt�1, defined as

Nt�1 � �s 	�θs � θt�1� � ξ, s � t� 1� .

The samples in this neighborhood represent similar past states and can be used
for dynamics estimation since their succeeding samples are available. We collect
the succeeding samples, i.e., θs�1 for each s 
 Nt�1, and compute their mean and

covariance, denoted by �θfθ,t�1 and Cf
θ,t�1, respectively. The pdf of the dynamics

of the underlying process is estimated by

Pr�θt	θt�1�� exp

�
�
�
θt � �θfθ,t�1


T �
Cf

θ,t�1

��1 �
θt � �θfθ,t�1


�
. (14)

Since we merely have pointwise definitions of the statistical models, we use the
concept of sequential Monte Carlo methods [2,6] and represent the posterior pdf

by a set of support samples �θ�k�t �Pk�1 (“particles”), i.e.,

Pr�θt	θt�1, zt� �
P�

k�1

w
�k�
t δ

�
θt � θ�k�t



, (15)

where the weights are given by

w
�k�
t � Pr�θ�k�t 	θt�1, zt�,
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with
�P

k�1 w
�k�
t � 1. We therefore have a discrete approximation of the desired

posterior pdf. At each time step, the particles are drawn from the posterior pdf
estimate of the preceding step. By Bayes’ theorem and by the Markov dynamical
model, we obtain

w
�k�
t �Pr�θ�k�t 	θt�1�Pr�zt	θ�k�t �. (16)

The densities in (16) are estimated based on the embedded domain from (13)
and (14). Using the estimate of the posterior pdf, a sequential estimator of the
underlying process at t can be computed according to an optimization criterion.
For example, the minimum mean squared error (MMSE) estimator is given by

θ̂t � E �θt	θt�1, zt� �
�
θtp�θt	θt�1, zt�dθt �

P�
k�1

w
�k�
t θ

�k�
t . (17)

We emphasize that the Gaussian prior and likelihood represent the distribution
in the low dimensional inferred space and are used merely for tracking.

6 Application to Imaging

In the following experimental study, we simulate a simple imaging model of a 2-d
shape measured by a 1-d linear sensor array. Assume we measure the shape of a
rigid biological material that vibrates over time. Let θt denote the position of the
center of the object, which is assumed to be a diffusion process with unknown
coefficients (1). For simplicity, we set the initial position at the origin. The noisy
measurements zt � yt�vt are the output signals of 15 simulated sensors, where
vt is a corrupting white Gaussian noise. In this case, the clean measurement
component in the i-th sensor is given by

yit � f�pi � θt�
where pi is the location of the i-th sensor on the array axis, and f is the distance
that the beam of radiation or light traveled through the object. Figure 1(a)
depicts the experimental setup. The objective in this experiment is to suppress
the noise in the measurements zt and obtain an estimate of the measured shape
f�pi� at each sensor at t � 0. In this simulation, we chose f to be a Gaussian.

We applied the presented Bayesian framework to reveal and track θt from the
noisy measurements without any additional information on the models, which
were used merely to simulate the data. Figure 1(b) presents the tracking results
using the MMSE estimator (17). This result exemplifies the tracking ability of
the presented Bayesian framework, which solely relies on the measured signal.

Next, we utilize the recovered movement for aligned averaging to improve

the noise suppression. Let f̂u�pi� � �
t z

i
t and f̂a�pi� � �

t z
ît
t be estimates

of the shape obtained by unaligned and aligned averaging, respectively, where
ît � argminj 	pj � �pi � θ̂t�	 and θ̂t is the MMSE estimate of the position of the
center. We computed the mean square error (MSE) between these estimates and
the true measured shape f�pi� as an objective performance measure. The aligned
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Fig. 1. (a) An illustration of the experimental setup. (b) Tracking the center position
of the shape. The yellow line is the true position of the center. The vertical strips
of gray level intensity represent the posterior pdf estimate obtained by the Bayesian
tracking in each time sample. The solid black line is the expected value based on the
posterior pdf estimate (MMSE estimator (17)).

estimator showed 11.2 dB mean improvement over the MSE obtained by the
unaligned estimator. This result implies on the potential benefit of incorporating
temporal information and nonparametric Bayesian tracking in imaging.
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